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The effect of acetonitrile adsorption on the infrared spectrum of an acidic hydroxyl group of a zeolite was
studied using quantum-chemical calculations. The hydroxyl and its surroundings in the zeolite were modeled
by a cluster molecule. Potential energy and dipole surfaces of the model were computed with density functional
theory applying the Becke3LYP functional. A potential energy surface has been constructed as a function of
the stretch, in-plane bending, and out-of-plane bending coordinates of both the hydrogen and the oxygen
atom of the hydroxyl group, as well as the center-of-mass stretch coordinate of acetonitrile. Taking into full
account anharmonicities, we computed the vibrational wave functions and infrared absorption intensities using
a variational approach. To facilitate their interpretation, the computed spectra were decomposed with respect
to the different vibrational coordinates. It was found that the use of center of mass conserving coordinates for
the hydroxyl group is insufficient to obtain accurate hydroxyl stretch frequencies, and that oxygen coordinates
need to be included in the calculation. The inclusion of oxygen coordinates furthermore improves the computed
Fermi resonance splitting. A new explanation for the width of the A,B spectra is proposed.

Introduction

Zeolites are crystalline materials consisting mainly of SiO4

tetrahedra that are linked through sharing of oxygen atoms. They
appear in many different crystal structures that exhibit channels
and cages of molecular dimensions 4-12 Å. In most zeolites a
fraction of the silicon atoms is replaced by aluminum atoms.
The negative charge this introduces into the lattice can be
balanced by a proton attached to the oxygen atoms that bridges
a silicon and an aluminum atom, thus forming a bridged
hydroxyl with strong Brønsted acidity. The combination of these
acidic sites with the well-defined micropores makes them
suitable catalysts for a range of reactions.

In the infrared spectrum of a zeolite, the bridged hydroxyl
stretch mode is observed in the range 3605-3615 cm-1. If a
weakly basic molecule is adsorbed on the hydroxyl, the stretch
frequency shifts to lower values. The shift that occurs with a
certain base molecule has been proposed as a measure for the
acidity of the bridging hydroxyl (see ref 1 and references
therein). For this application weak bases such as CO and N2

that only cause small shifts are most suitable.2,3

Acetonitrile is among the strongest basic molecules that will
disturb a bridging hydroxyl, but not subtract a proton from it.
The infrared spectrum resulting is more complicated than that
of weaker bases. It displays a large downward shift (800-1200
cm-1) of the hydroxyl stretch band, as well as a marked splitting
and broadening of the band. The resulting two main broad bands
at 2400 and 2800 cm-1 are usually referred to as the A,B-diad.
Sometimes a third band, denoted “C” is seen at even lower
frequencies. This band is usually less clear. Conclusive experi-
mental evidence exists that these bands are due to one single
type of complex, where acetonitrile is hydrogen bonded to the
bridging hydroxyl.1,4,5

The characteristic splitting of the shifted hydroxyl stretch band
into the A,B-diad is caused by a Fermi resonance between a
broadened hydroxyl stretch band (ν) and the overtone of the

in-plane (δ) hydroxyl bending, where the “plane” refers to the
plane formed by the Si-O-Al group on which the extra proton
sits.

Empirical models have been applied to describe the spectra.6-8

In earlier work we tried to compute the infrared spectrum from
first principles,9 taking into account only a minimal set of
vibrational coordinates: the coordinates of the hydrogen atom
of the hydroxyl group and the intermolecular stretch of the
acetonitrile molecule as a whole with respect to the hydroxyl.
Using this simple model we could show that among the
vibrational wave functions computed on the basis of a density
functional potential energy surface Fermi resonances did occur.
However, the computed width of the A,B bands, the size of the
A,B splitting, and the stretch frequency of the free bridged
hydroxyl left room for improvement. In the current paper we
present the results of an extension of the former model to include
the dynamics of the oxygen atom. Based on this model, we
propose an interpretation of the nature of the A,B-spectra that
differs from the empirical models mentioned.

Computational Details

Potential Energy and the Dipole Surfaces.The acidic OH
group of the zeolite is represented by a small, neutral, cluster
molecule, terminated by hydroxyl groups. This model is shown
in Figure 1, along with the coordinates we used in the vibrational
calculations. All coordinates are linear combinations of atomic
displacements. Electronic structure calculations have been used
to compute potential energy and dipole surfaces as a function
of a limited number of degrees of freedom.

In a previous paper,9 where we presented calculations of
anharmonic coupling effects, we only considered the stretch,
in-plane, and out-of-plane coordinates of the hydrogen atom,
and the stretch of the H‚‚‚N hydrogen bridge, with acetonitrile
as a rigid particle. Here we also include the movement of the
oxygen atom of the OH group for the acidic OH group and the
acidic OH group with adsorbed acetonitrile. We extended the
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potential energy and dipole surfaces used in the previous work
to obtain 6- and 7-dimensional versions.

The potential energy surfaces used are based on density
functional theory electronic structure calculations using Becke’s
three-parameter functional with the nonlocal correlation provided
by the Lee, Yang, and Parr expression.10-13 We have demon-
strated earlier9 that this method gives results that are significantly
better than those obtained with Hartree-Fock. Therefore we
have not extended the Hartree-Fock potentials from the
previous work. The electronic structure calculations have been
carried out with the Gaussian 92/DFT program package.14 A
mixed basis set has been used with STO-3G15 on the H atoms
of the terminal OH groups, 6-311+G* 16-18 on the central O
atom of the zeolite cluster and the N atom of acetonitrile, and
6-31G** 19-22 for the other atoms. This basis set describes the
atoms that are important in the interaction between the acidic
hydroxyl and the acetonitrile molecule accurately.9 The minimal
basis set on the terminal hydrogen atoms of the cluster was
used to reduce computational costs.

As a starting point for the potential energy surfaces, the zeolite
cluster as shown in Figure 1 was optimized with and without
adsorbed acetonitrile. The optimization was restricted in two
ways. First, during the optimization, the plane through the central
Si-OH-Al group was kept as a mirror plane, to reduce the
number of points that had to be computed for the potential
energy surface. Second, to prevent internal hydrogen bridging,
the Si-O-H and Al-O-H angles of the terminating OH
groups were fixed at tetrahedral angles, and going from the
central O atom to a terminal OH, O-Si-O-H and O-Al-
O-H atoms were required to stay in one plane.

The three-dimensional potential energy surface is the potential
energy of the zeolite cluster as a function of the acidic hydrogen
coordinates. It is based on electronic structure calculations
performed for a grid of acidic hydrogen positions. The grid was
constructed as follows: At five different OH distances, 0.8, 0.9,
1.0, 1.1, and 1.4 times the equilibrium distance, the hydrogen
atom was bent toward the Al atom by an angleθ of 0°, 7.5°,
20°, and 60° and subsequently rotated around the axis defined
by the equilibrium acidic OH bond by an angleφ of 0°, 45°,
90°, 135°, and 180°. The energies and dipoles of geometries

corresponding toφ ) 225°, 270°, and 315° were inferred from
the 135°, 90°, and 45° points by taking into account the
symmetry plane of the cluster.

The four-dimensional potential describes the energy of the
zeolite cluster with a molecule of acetonitrile adsorbed as a
function of the acidic hydrogen coordinates and the acetonitrile
center of mass stretch coordinate. All internal acetonitrile
coordinates were kept fixed. A grid of hydrogen positions has
been constructed in the same fashion as for the bare zeolite
cluster, using the equilibrium OH distance in the acidic hydroxyl
with acetonitrile adsorbed. For each of the points of this grid
the electronic energy was computed for five different distances
between acetonitrile and the oxygen atom of the zeolite acidic
OH group: the equilibrium distancer0, r0 ( 0.15 Å, andr0 (
0.5 Å. The potential energy points were fitted with fourth-order
polynomials. For the fit each pointi was attributed a fit weight
wi according to the following expression:

HereVi is the electronic energy of pointi, N is the total number
of points, andf is a positive factor that determines the relative
weight of the points. This expression attributes larger fit weights
to data points with lower potential energies. Physically, data
points with low energy are relatively more significant for the
correct description of the lower lying vibrational levels, which
we want to describe. Thef parameter was given a value of
125Eh

-1, so as to produce a root-mean-square error smaller than
1 × 10-3Eh. The computed energies for potentials were in an
interval of approximately 0.2Eh.

All fits in this paper were performed with singular value
decomposition,23 in order to remove near-degeneracies. For the
three and four-dimensional fits we had to set one of the singular
values to zero. This means that one degree of freedom of the
polynomial was fixed through minimization of the squares of
the coefficients.

Both the three and four-dimensional potential had negative
fourth order coefficients for the hydrogen stretch coordinate. If
basis functions were allowed to extend into the area where the
fitted potential approached negative infinity, unphysical vibra-
tional wave functions would be computed. We have shown
earlier9 that this problem does not occur in our three- and four-
dimensional calculations, since the wave functions stay confined
to an area where the fitted potential interpolates between the
computed data points.

The six-dimensional potential describes the potential energy
of the zeolite cluster, as a function of the position of the oxygen
and hydrogen atoms of the acidic OH group. In its construction,
the coefficients of the three-dimensional potential for hydrogen
displacement have been retained. The second-order coefficients
for the oxygen coordinates and the bilinear coupling coefficients
for the oxygen coordinates among themselves, and with the
hydrogen coordinates, have been derived from the force
constants computed in a Gaussian92 normal mode calculation.
The potential thus constructed did not display the desired
asymptotic behavior for large displacements of the atoms from
their origins. In certain directions, already at relatively small
distances from the equilibrium, the potential showed large
negative values, giving rise to the computation of unphysical
vibrational states.

To improve the potential, extra data points of the potential
energy surface have been computed. The grid of extra points

Figure 1. Zeolite cluster model with adsorbed acetonitrile. The
vibrational coordinates used in the calculations are shown as arrows.

wi ≡
e-fVi

∑
j

N

e-fVj

(1)
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can be described in terms of displacement vectors of oxygen
and hydrogen. We definex1 to be a vector along the OH bond,
x2 a vector in the direction perpendicular to the OH bond in
the Al-O-Si plane, andx3 a vector perpendicular tox1 and
x2.

Initially, a grid has been constructed from molecular geom-
etries where oxygen or both oxygen and hydrogen were
displaced by(x1, (x2, (x3, or ( (x1 + x2 + x3)/x3. The
lengths of the vectorsxi are derived from the force constants in
the corresponding directions, in such a way that the displace-
ments correspond to 8 times the root-mean-square (rms)
displacement of a one-dimensional harmonic vibration of the
atom. This means that the vectors for hydrogen displacement
have different lengths from those for oxygen. The fitted second-
order coefficient of the potential energy with respect to the out-
of-plane movement of hydrogen is negative. This displacement
has its length derived from the force constant used for the basis
function, as described in ref 9.

In some of the geometries generated in this grid the OH
distance becomes as small as 0.16 Å. Therefore we have applied
a correction to the grid points through expansion of the OH
bond about its center of mass. The new OH distance was
computed from the old via a linear transformation that leaves
the maximum distance from the grid as it is and expands the
smallest distance to 0.5 times the equilibrium distance of the
OH bond. If the maximum distance in the original grid isrmax,
the minimum distancermin, and the equilibrium OH distance
req, then the new OH distancesr′ are computed from the oldr
using

The grid contains 210 points, which were attributed fit weights,
as described in eq 1, again withf ) 125Eh

-1. In the singular
value decomposition procedure we had to set 47 singular values
to zero. This means that 47 degrees of freedom in the polynomial
were left that were fixed by minimizing the sum of the squares
of the fitted coefficients. The potential so obtained proved
suitable for our calculations and no unphysical vibrational states
were found with the basis set we employed.

The seven-dimensional potential energy surface describes the
potential energy of the zeolite cluster with adsorbed acetonitrile
as a function of the coordinates of the acidic OH group of the
cluster and the center of mass stretch of acetonitrile. It has been
constructed by retaining the coefficients of the four-dimensional
potential, and quadratic terms for the oxygen movement and
bilinear coupling terms between oxygen and hydrogen coordi-
nates have been derived from a Gaussian normal mode calcula-
tion. Coupling terms between the oxygen coordinates and the
acetonitrile coordinate have been neglected, because although
they are small and have little physical importance, they can give
rise to problems with the asymptotic behavior of the fitted
polynomial if no higher order coefficients are included as well.

As in the case of the six-dimensional potential, extra points
of the potential energy surface had to be computed, and a grid
similar to the one described for the six-dimensional surface was
employed. No extra points were used to further probe the
coupling of the oxygen coordinates and the acetonitrile coor-
dinate. The grid of the extra points for the seven-dimensional
potential was constructed with vectorsxi (see above) of a length
4 times the one-dimensional harmonic rms displacement of the
atom. This is much nearer to the origin than in the six-
dimensional case, where the larger displacements were necessary

to get satisfactory asymptotic behavior of the fitted potential.
Because of the smaller displacements there was no need to adjust
the grid points afterward to prevent too small interatomic
distances.

Fit weights were attributed to the extra points in the same
manner as in the six-dimensional case. In this case 41 singular
values had to be set to zero.

For all the data points we used for the three- and the four-
dimensional potential energy surfaces, also thex, y, and z
components of the dipole were computed. Using the same fit
weights as for the energy, the dipole surfaces were fitted by
fourth-order polynomials.

To reduce computational cost we only used linear dipole
surfaces for both the six- and the seven-dimensional spectra.
For the hydrogen and acetonitrile coordinates the dipole
coefficients up to first order computed from the three- and four-
dimensional surfaces were used, for the oxygen coordinates the
dipole and dipole derivatives computed in a Gaussian92 normal
mode calculation were used.

From the three- and four-dimensional calculations it appears
that the computed spectra are hardly affected by the omission
of higher order dipole coefficients. As a test case we computed
for the four-dimensional spectrum that the total absorbed
intensity of the infrared spectrum at 298.15 K, in the range of
0-4000 cm-1, decreases by 0.35%, comparing a linear dipole
surface to a fourth-order dipole surface. For that same spectrum,
the root-mean-square difference in intensity on a per transition
basis was about 3.2%. Clearly, differences exist in both positive
and negative directions and are of minor importance.

Calculation of the Infrared Spectra

Vibrational Hamiltonian. The Hamiltonian employed in the
vibrational calculations is the following:

In this expressionD is the number of dimensions,qi are the
spatial coordinates with conjugated momentapi, M-1 is the
inverse mass matrix, andaR1,...,RD are the coefficients of theNth
order polynomial representing the potential energy.24 For all
the calculations in this paper, the polynomial orderN has been
equal to 4. The way the potential energy polynomial is truncated
ensures that its shape does not depend on a particular choice of
internal coordinates. (It should be noted, however, that the wave
function space spanned by the basis set is not independent from
the choice of the coordinates.)

We choose to use a polynomial representation of the potential
because it has no bias toward a particular potential shape, and
matrix elements can be readily computed in the basis set we
employed. To this effect, the Hamiltonian was converted into a
representation of normal products of creation and annihilation
operators.25

A disadvantage of the polynomial form of the potential is
the unphysical behavior of the potential outside the area where
data points were computed. A polynomial potential goes to(∞,
where a physical potential levels off to a constant value. This
is mainly a concern if the polynomial goes to-∞. As a result,
unphysical low-energy vibrational states can occur in the
calculation, if the basis functions have a nonnegligible amplitude

r′ ) r +
(rmax - r)

(rmax - rmin)
(req/2 - rmin) (2)

H )
1

2
∑
i)1

D

∑
j)1

D

Mij
-1pipj + ∑

R1,...,RD

aR1,...,RD ∏
i)1

D

qi
Ri with

0 e ∑
i)1

D

Ri e N (3)
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in the area where the potential has unphysically low values.
We have avoided such basis functions.

The off-diagonal termsMijpi pj in the kinetic energy can have
nonzero values if the coordinates are not orthogonal. This was
never the case in the calculations described in this paper.

The wave functions are expanded in products of one-
dimensional harmonic eigenfunctions (Hermite functions).24

In this expressionψ is the vibrational wave function inD
dimensions andφ(Ri)(qi) is the normalizedRith-order Hermite
function of coordinateqi. The basis was truncated by specifying
a maximum valueNi for eachRi and subsequently imposing
the following condition for each basis function:

In the case of a harmonic potential this limits the total energy
of any basis function to the highest energy one-coordinate basis
function plus the zero-point energy of the other one-coordinate
basis functions.

In the computations in the current work we usedNi ) 12 for
the hydrogen and acetonitrile coordinates, andNi ) 6 for the
oxygen coordinates. The main reason not to extend the basis
set on the oxygen coordinates to 12 as well was to keep the
calculations feasible. On a physical basis it can be argued that
a larger basis on the hydrogen coordinates is needed: the
hydrogen atom is more subject to anharmonicities in the
potential due to its smaller weight and hence larger amplitude.
The basis sets contained 455, 1820, 3906, and 11 286 functions
for the three-, four-, six-, and seven-dimensional models,
respectively.

The one-dimensional Hermite functions are characterized by
the quotient of a force constant and a mass. For the mass we
used 1/(Mii

-1) as defined in eq 3. The force constant was derived
from the second-order coefficient of the coordinate in the
potential energy. For the out-of-plane bending coordinate of
hydrogen in the zeolite cluster without acetonitrile, this coef-
ficient was negative, and the force constant was derived from
the rms deviation of the anharmonic wave function in this
coordinate. This procedure was described in more detail in ref
9.

We computed integrated infrared absorption intensities ap-
plying Fermi’s golden rule26 and fractional Boltzmann occupa-
tion numbers at a given temperature. The integrated absorption
intensityAiff from initial level i to final level f is given by

In this expressionAiff is defined for one particle per unit surface,
integrated over wavenumbers and averaged over different
molecular orientations.∆E is the difference in energy between
the normalized states|i〉 and|f〉, ε0 is the electrical permittivity
of vacuum,h is Planck’s constant,c is the speed of light in a
vacuum,µx, µy, andµz are the components of the dipole operator,
Ej is the energy of vibrational levelj, k is the Boltzmann

constant,T is the absolute temperature, andN is the number of
vibrational states taken into account.

In the computation of the matrix elements〈i|µR|f〉 from eq 6
the electric anharmonicities, i.e., second-order and higher terms
in the dipole components, were taken into account for the three-
and four-dimensional models. As discussed earlier, we only used
linear terms of the dipole components in the six- and seven-
dimensional models. Mechanical anharmonicities, i.e., third-
order and higher terms in the potential energy, were incorporated
in all calculations. To facilitate the computation of transition
dipoles, the dipole components were converted into a repre-
sentation of normal products of creation and annihilation
operators.

Modified Lanczos Algorithm

The computations on the six- and seven-dimensional systems
are much larger than those on the three- and four-dimensional
ones in the previous work in two respects: the basis sets are
larger, and the numbers of levels that need to be computed to
find the first excited state of the OH stretch mode are larger.
Because the fundamental frequencies of the oxygen modes are
very low compared to the hydrogen stretch mode, the number
of extra modes that need to be computed for the six- and seven-
dimensional spectra are even larger than should be expected
from the added dimensions alone. The computation of the
eigenvectors, which we use to obtain absorption intensities and
to analyze the levels, entails large computer memory usage and
CPU time consumption in the simple Lanczos algorithm we
used for the three- and four-dimensional models. Furthermore,
it appeared that at a certain, insufficient, number of computed
energy levels, we could not obtain extra levels by increasing
the number of Lanczos iterations. To overcome these problems,
we implemented a slightly modified Lanczos scheme, as
described by Lewis in his Ph.D. thesis.27

In a Lanczos procedure, extreme eigenvalues, and eigenvalues
that are well separated, can be obtained with a small number of
iterations. The method we employed improves the separation
of the eigenvalues in the interval we are interested in, relative
to the separation of eigenvalues outside that interval. We start
by computing the extreme eigenvaluesEmin and Emax of the
HamiltonianH, which is easily done with an ordinary Lanczos
scheme. Then we determine the interval [Emin,E0] in which we
want to find the eigenvalues and construct a polynomialf such
that it maps [Emin,E0] to [fmin,f0] and [E0,Emax] to [f0,fmax].
Furthermore,f is monotonic on [Emin,E0], and constructed such
that

Figure 2 shows such a polynomial of fourth order, which has a
Qstretch of 34.5. This means that the relative part of the
eigenspectrum occupied by the eigenvalues we are interested
in is larger by a factor of 34.5 in comparison of the transformed
Hamiltonian to the original one. The HamiltonianH and the
operator f(H) share the same set of eigenvectors, but the
eigenvalues off(H) corresponding to those ofH in [Emin,E0]
are better separated. We diagonalizef(H) by employing an
ordinary Lanczos procedure and use the computed eigenvectors
|Ψi〉 to obtain the eigenvalues ofH asEi ) 〈ψi|H|ψi〉.

For the six-dimensional calculation, a fourth-order polynomial
was sufficient to compute 300 energy levels in 3000 Lanczos
iterations, the highest level differing from the lowest by 3933

ψ(q1,...,qD) ) ∑
R1,...,RD

cR1,...,RD ∏
i)1

D

φ
(Ri)(qi) (4)

∑
i)1

D Ri

Ni

e 1 (5)

Aiff )
2π2∆E

3ε0h
2c2

∑
R)x,y,z

|〈i|µR|f〉|2
e-Ei/kT

∑
j

N

e-Ej/kT

(6)

Qstretch≡
(f0 - fmin)/(fmax - f0)

(E0 - Emin)/(Emax - E0)
. 1 (7)
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cm-1. The polynomial was constructed withE0 - Emin ) 4000
cm-1 and had a stretching quotientQstretch) 19.2.

To compute enough levels of the seven-dimensional system,
we had to construct a ninth-order polynomial, starting withE0

- Emin ) 5000 cm-1. This polynomial had a stretch quotient
Qstretch) 188, enabling us to compute 629 different energy levels
in 4000 Lanczos iterations, with a difference of 4105 cm-1

between the highest and the ground level.
Note that the general trend is that both raising the order of

the polynomial and shifting up the value ofE0 result in higher
values ofQstretch. One disadvantage of raising the order of the
polynomial is that it increases CPU time consumption per
Lanczos iteration. Another disadvantage is that it may cause
deterioration of accuracy. The accuracy can, however,
be easily monitored by calculating 〈ψi|H|ψi〉 (

x〈ψi|H2|ψi〉-|〈ψi|H|ψi〉|2,28 which provides sharp boundaries
in which an exact eigenvalue exists. This shows for our seven-
dimensional calculations that four significant digits are present
for all levels, whereas most levels are defined much sharper.
Raising the value ofE0 too much eventually deteriorates the
possibility of find eigenvalues in the desired area, because the
number of well-separated eigenvalues that can be found
increases.

Attribution of Peaks in the Infrared Spectrum

For the three- and four-dimensional models we used it was
possible to identify different wave functions looking at the
coefficients of the basis functions.9 In the six- and seven-
dimensional calculations it has become much more difficult to
do so, because the used coordinates are strongly coupled.
Typically, a wave function has a number of contributing basis
functions with normalized coefficients having an absolute value
of approximately 0.2, and often no obvious main component is
present. We use the following method to determine whether a
coordinate is involved in a certain transition in the infrared
spectrum, and subsequently to compute partial spectra for each
coordinate.

Suppose that the initial stateψi is given by

We form new states

with nk * 0 andnj with j * k arbitrary. This corresponds to an
excitation (nk > 0) or de-excitation (nk < 0) of the initial state
in coordinatek, and possibly (de)-excitations in other coordinates
as well. To determine if a transition fromψi to a final stateψf

involves excitation in coordinatek, we projectedψf onto the
space spanned by theψi

(k;n)’s with nk > 0. The contribution of
the transitionψi f ψf in the partial spectrum of the excitation
in coordinatek is the peak intensity of that transition times the
norm of the projection. Takingnk < 0, we can generate partial
spectra for de-excitations.

Interpreting the partial spectra obtained in this way, one
should keep in mind that they do not represent anything else
but a computational version of comparing coefficients of basis
functions. They have no measurable physical meaning, and are
a function of the coordinates chosen. In the limit of a harmonic
potential with the corresponding normal coordinates and a linear
dipole surface the partial spectra add up to give the total infrared
spectrum, and each partial excitation spectrum contains exactly
the single transition belonging to its normal coordinate whereas
the de-excitation spectra contain no peaks at all. In most other
cases, the partial spectra add up to yield more than the total
intensity of the total infrared spectrum. This happens because
of the coupling of the coordinates. A transition in which two
modes are simultaneously excited shows up with full intensity
in both partial spectra. Partial spectra that would be additive
can only be constructed with arbitrary partition schemes, very
similar to the ones used in Mulliken population analysis.

Results and Discussion

Our calculations yield infrared transition frequencies and
integrated absorption intensities, but no line widths. To generate
the spectra shown in this paper, we convoluted Dirac delta
functions with normalized Gaussian curves of width 10 cm-1,
multiplied by the absorption intensity. In the figures of the
decomposed spectra, the intensity of the partial excitation spectra
is plotted in the positive direction (up), and the de-excitation
spectra are plotted in the negative direction (down). De-
excitation spectra mostly contain peaks for the lower energy
modes, because they involve thermally excited initial states. All
spectra plotted in this paper are computed at a temperature of
298.15 K.

Figure 3 shows the computed infrared spectra for the three-
dimensional (hydrogen coordinates only) and six-dimensional
(oxygen and hydrogen coordinates) models. In the six-
dimensional spectrum the area between the out-of-plane bending
(ca. 400 cm-1) and the in-plane bending mode (ca. 1100 cm-1)
contains many small combination peaks that contain contribu-
tions from the oxygen modes and the hydrogen bending modes.
The oxygen modes in our model represent part of the dynamics
of the Si-O and Al-O bonds, which cause the lattice modes
in zeolites. The six-dimensional spectrum already shows that
the lattice modes will interact with the out-of-plane hydroxyl
bending mode.

The fundamental hydroxyl stretch frequency is found in the
six-dimensional calculation at approximately 3522 cm-1. The
peak at 3575 cm-1 is a hot band where the hydroxyl stretch is
excited from an initial state that is excited in the out-of-plane
bending of oxygen. This peak is similar to the peak at 3558
cm-1 in the three-dimensional spectrum, which represents an
excitation of the hydrogen stretch from an initial state in which
the hydrogen out-of-plane bending is already excited (see also9).

Figure 2. Polynomial to modify the eigenvalue spectrum of a
Hamiltonian in order to improve separation of certain levels. On the
horizontal axis are the eigenvalues of the original Hamiltonian, on the
vertical axis, the corresponding eigenvalues of the new Hamiltonian.

ψi ) ∑
R1,...,RD

cR1,...,RD ∏
j)1

D

φ
(Rj)(qj) (8)

ψi
(k;n) ) ∑

R1,...,RD

cR1,...,RD ∏
j)1

D

φ
(Rj+nj)(qj) (9)
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The hydroxyl stretch frequency of 3522 cm-1 computed in
the six-dimensional spectrum is nearer to the experimental value
around 3610 cm-1 than the value in the three-dimensional
spectrum of 3375 cm-1. In the six-dimensional model the
reduced mass for the hydroxyl stretch mode is ca. 6% smaller
than that of the corresponding hydrogen stretch in the three-
dimensional model. If this were the main difference, it would
in the harmonic case lead to an increase of the frequency by
ca. 3%, or approximately 100 cm-1. This amount is not enough
to explain the observed difference.

To investigate the influence of the reduced mass further, we
took three internal OH coordinates and computed an infrared
spectrum using the corresponding three-dimensional intersection
of the six-dimensional potential. For the hydrogen atom these
coordinates were identical to those used for the older three-
dimensional calculations, but also oxygen was moving so as to
conserve the center of mass of the OH group. We found that
the OH stretch frequency computed did not differ from the one
in the old three-dimensional calculation. The explanation lies
in the cancelation of two effects: on one hand the lower reduced
mass would lead to a higher OH stretch frequency, whereas on
the other hand the intersection of the potential energy well is
flatter for the energy surface with the internal OH coordinates.
The latter effect can physically be understood in terms of bond
strengths. When the OH bond becomes longer, and oxygen is
allowed to move in the opposite direction of hydrogen, the OAl

and OSi bonds become shorter. This allows these bonds to
become stronger at the same time the OH bond becomes weaker,
causing a flatter potential energy well for the coordinate. When
the OH bond shortens, the OAl and OSi bonds become longer,
causing a small increase in energy. We found this effect to be
smaller than the lowering of the energy for the longer OH bond.
Moreover, for the vibrational frequency, the lower parts of the
potential energy well are more important than the higher parts.

We find that a “reduced mass effect” in itself is not
responsible for the difference in hydroxyl stretch frequency that
is observed between our three- and six-dimensional models
(Figure 3). An explanation for the fact that the six-dimensional
spectrum does have a higher hydroxyl stretch frequency than
the three-dimensional one should be found in the extra modes.
The additional modes of the oxygen atom are low in energy
and push the hydroxyl stretch mode up. It is therefore essential
to include the oxygen modes as extra modes when computing
stretch frequencies of bonded hydroxyl groups. The intuitively
appealing one-dimensional approximation using a coordinate
that retains the center of mass of the hydroxyl group, along
with the reduced hydroxyl mass, can yield a stretch frequency
that is too low.

The decomposed spectra in Figure 3 show that in the three-
dimensional model the chosen coordinates represent modes that
are almost normal to each other. In the six-dimensional
calculation we see that all the modes included take part in the
in-plane bending around 1100 cm-1. The interaction between
the modes clearly demonstrates that the set of coordinates used
does not correspond to a set of normal modes.

In Figure 4 the decomposed spectra for the four- and the
seven-dimensional models are plotted. Note that some of the
peak positions written in Figure 4a differ from those reported
in ref 9. The wavenumbers in our previous article corresponded
to one transition, whereas in this article we used the maxima in
the total spectrum as plotted in the figures. Because, especially
in the higher dimensional spectra almost every peak is due to
more than one transition, the positions of the maxima in the
spectrum usually differ somewhat from the frequency of their
principle component. In the case of the seven-dimensional
spectrum there is sometimes no clear principle component.

The decomposed spectrum of the four-dimensional calculation
(Figure 4), clearly shows the interaction between the hydrogen
stretch and the hydrogen in-plane bending overtone. The in-
plane bending mode has peaks on both sides of the “Fermi dip”
at ca. 2600 cm-1, whereas the stretch is predominantly present
on the high-frequency side. The acetonitrile stretch interacts
almost exclusively with the hydrogen stretch mode, causing a
broadening of approximately 300 cm-1.

In the four-dimensional spectra the following important
transitions are visible. At 112 cm-1 the fundamental acetonitrile
center of mass stretch is found. The out-of-plane hydrogen
bending and its overtone are visible at 778 and 1690 cm-1,
respectively. At 1153 cm-1 we find the in-plane hydrogen
bending mode; its overtone is at 2387 cm-1. All these transitions
can be readily identified from the partial spectra plotted in Figure
4a. The in-plane bending overtone at 2387 cm-1 has some slight
interaction with the hydrogen stretch and the main hydrogen
stretch peak at 2626 cm-1 shows substantial interaction with
the in-plane bending overtone. This follows from looking at
the coefficients of the basis functions of the involved states and
also from the partial spectra in Figure 4a. The interaction
between the in-plane bending overtone and the hydrogen stretch
is a Fermi resonance. This is an interaction between two
vibrational states that approximately have the same energy, not

Figure 3. Decomposed infrared spectra of the zeolite hydroxyl group
according to the three- (a) and six-dimensional (b) model. Wavenumbers
are in cm-1, intensity is in 105 m2/mol. The spectrum on the bottom
line represents the full infrared spectrum. From bottom to top then
follow the partial spectra of the hydrogen stretch, in-plane bending,
and out-of-plane bending and, for the six-dimensional model the partial
spectra of the oxygen stretch, in-plane bending, and out-of-plane
bending mode.
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caused by the symmetry of the molecule. The peak at 2773 cm-1

represents a combination band of the hydrogen stretch and the
acetonitrile center of mass stretch mode. From the partial
acetonitrile stretch spectrum it can be seen that the acetonitrile
stretch interacts with all modes where the hydrogen stretch mode
is involved.

Combining the information from the coefficients of basis
functions in the wave functions, and the decomposition of the
spectrum, we made the following attribution of peaks in the
seven-dimensional spectrum. The acetonitrile stretch mode is
found at 117 cm-1. The small peak at 170 cm-1 can be attributed
to the oxygen out-of-plane bending. The peaks at 685 and 750
cm-1 are due to hydrogen in-plane-bending and oxygen out-
of-plane bending modes, respectively. The hydrogen in-plane
bending mode is found at 1199 cm-1, clearly enhanced in
intensity compared to the spectrum without acetonitrile. At 1603
cm-1 there is the hydrogen out-of-plane bending mode overtone,
and at 1971 cm-1 a small peak due to a combined excitation of
both the hydrogen and the oxygen in-plane bending modes can
be observed. Then from 2467 to 2860 cm-1 there is the Fermi
resonance region. The peak at 2467 cm-1 is mainly due the
hydrogen in-plane bending overtone. The peaks at 2690, 2745,
and 2860 cm-1 all contain important contributions from both
the hydrogen stretch and the in-plane bending modes.

The seven-dimensional spectrum displays a somewhat clearer
dip in the Fermi resonance region than the four-dimensional
spectrum. Also, the Fermi region is slightly shifted to higher
frequency, however leaving the dip around the experimentally
observed 2600 cm-1. The shift is smaller than the upward shift
of the hydroxyl group without acetonitrile, in comparison of
three- and six-dimensional computations. This means that the
overall calculated shift of the hydroxyl stretch frequency upon
acetonitrile absorption increases if one takes into account the
movements of the oxygen atom of the hydroxyl group.

The decomposition of the seven-dimensional spectrum is
much less clear than that of the other spectra. This is partly
due to the anharmonic coupling between the coordinates that
we employed, which implies that it is impossible to assign
infrared peaks to one single mode. Another factor is that the
number of excited states that should be included in the
decomposition to account for the observed absorption intensity
is much greater than for the other spectra. The number of excited
states actually included is, however, limited by computational
resources.

Figure 5 shows a comparison between our six- and seven-
dimensional models and an experimental difference spectrum.
In this figure the infrared spectrum of a sample of HY is
subtracted from the same sample after absorption of acetonitrile.4

We compare it with the difference between our calculated
spectra of the seven- and six-dimensional models.

There is good agreement on the position of the Fermi
resonance “dip” between experiment and our calculations. Also
the fact that the low-frequency band is smaller in intensity than
the high-frequency band is reflected in the calculation. What is
clearly lacking in the calculation is the overall width of the A,B-
diad. Furthermore, the correspondence of the two peaks in the
free hydroxyl stretch region is deceptive. In the experimental
spectrum the lower frequency “free” hydroxyl band is due to a
hydroxyl that forms a weak hydrogen bridge in HY. The low-
frequency band in the calculated spectrum in this region
represents the free hydroxyl stretch mode and corresponds to
the higher frequency band in the experimental spectrum. The
highest frequency band in the calculated spectrum corresponds
to a hot band (vide supra) that is not present in the experimental

Figure 4. Decomposed infrared spectra of the zeolite hydroxyl group
with adsorbed acetonitrile according to the four- (a) and seven-
dimensional (b) model. Wavenumbers are in cm-1, intensity is in 105

m2/mol. The spectrum on the bottom line represents the full infrared
spectrum. From bottom to top then follow the partial spectra of the
hydrogen stretch, in-plane bending, out-of-plane bending, and the
acetonitrile center of mass stretch mode and, for the seven-dimensional
model the partial spectra of the oxygen stretch, in-plane bending, and
out-of-plane bending.

Figure 5. Experimental (top) and calculated (bottom) infrared differ-
ence spectra. Wavenumbers are in cm-1. The experimental spectrum
is the difference between a spectrum of a HY sample loaded with
acetonitrile, and one without acetonitrile. The calculated spectrum is
the difference between the calculated spectra for the six- and seven-
dimensional models discussed in this paper. The dotted vertical line
indicates the “Fermi dip”. The sharp peaks around 2300 cm-1 in the
experimental spectrum are due to acetonitrile CH vibrations and cannot
be reproduced in our model, where acetonitrile is modeled as rigid.
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spectrum and is presumably an artifact of the cluster model and
limited number of coordinates we used.

The physical picture that is used in the explanation of the
A,B-spectra in several empirical models is based on a model
that assumes a very strong couplingâ between the acidic
hydroxyl stretch mode, and the intermolecular stretch mode of
the adsorbed base with respect to the hydroxyl.6-8 We call this
model I. In a discrete level model this means that combination
and difference bands of the hydroxyl stretch mode with many
of the overtones of the intermolecular stretch modes determine
the bandwidth. The couplingâ′ between the hydroxyl stretch
and the in-plane bending overtone in this model is relatively
weak compared toâ.

There is, however, an alternative explanation of the same type
of spectrum possible, withâ , â′ (model II). In this model the
overall bandwidth is controlled by the coupling parameterâ′
of the hydroxyl stretch and the in-plane bending mode.

In previous discussions model I has been adopted because it
agrees with the empirical law that the half-width of a shifted
OH stretch band equals approximately three-fourths of the shift
itself (see ref 29 and references therein). This relationship holds
well for a number of experimental data, if for A,B-band systems
the half-width of the shifted hydroxyl stretch bands is taken to
be the overall width of the A,B-system.

However, our calculations point in the direction of a situation
between the extremes presented by model I and model II. From
Figure 4 we deduce values ofâ ≈ 200 cm-1 and â′ ≈ 230
cm-1. The value ofâ for model I would need to be ap-
proximately 800 cm-1. Although the potential energy surface
we employed leaves room for some improvement, we do not
think a better surface would give a significantly different result.
For model II a value ofâ approximately 300 cm-1 would suffice
to explain the same spectrum. If the hydroxyl stretch mode in
our model is shifted slightly downward, peak A in Figure 4
would broaden and reproduce the width of the experimental
spectrum.

Conclusions

Using a six-coordinate vibrational model for the bridged OH
group in a zeolite, we compute a value of 3522 cm-1 for the
OH stretch frequency, which is only 2.4% below the experi-
mental value. Vibrational models with three coordinates yield
a value of 3375 cm-1, which is off by 6.5%. The improvement
in the six-dimensional computation is due to the coupling of
the low-frequency oxygen modes with the hydrogen modes.

In the computed infrared spectrum of a zeolite-bridged OH
with adsorbed acetonitrile, the dip indicating a Fermi resonance
is at the same position as in the experimental spectrum. In
experimental spectra the position of the dip is rather independent
of the strength of the adsorbed base, so we can conclude that
the cluster model describes the zeolite-bridged OH well. The
computed shift of the OH band, however, is too small, indicating
that the interaction between the OH group and the acetonitrile
molecule is not described sufficiently by the used potential.
Factors of importance are the quality description of the hydrogen
bridge by the used density functional and the lack of interaction
with the zeolite wall in our model.

The general shape of the computed seven-dimensional
spectrum is not smooth enough. More vibrational modes will

be needed to get a better approximation of the experimental
spectrum. The method we used in the current work is not suited
to higher dimensional models.

Our calculations indicate that it is possible to interpret A,B-
type Fermi resonance spectra with a coupling of the hydroxyl
stretch with the stretch mode of the adsorbed base of the order
of 300 cm-1, if the coupling between the hydroxyl stretch and
in-plane bending overtone modes is considered to be of the order
of 300 cm-1, i.e., approximately the width of one of the A,B-
bands appearing in the infrared spectrum.
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